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Imagine we do an experiment with two groups (an experimental and a 
control).  In this experiment, we have 20 people in each condition.

Needs@"Histograms`"D;
Needs@"HypothesisTesting`"D;
SetDirectoryToNotebookLocation@D;

1 + 1

2

ndist = NormalDistribution@0, 10D;
ndist2 = NormalDistribution@10, 10D;

f = PDF@ndist, xD;
g = PDF@ndist2, xD;
myplot2 =
Plot@80<, 8x, -50, 50<, 8PlotRange Ø 80, 0.05<, PlotStyle Ø 88Thickness@0.02`D<<<D
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f = PDF@ndist, xD;
g = PDF@ndist2, xD;
myplot2 =
Plot@8f, g<, 8x, -50, 50<, 8PlotRange Ø 80, 0.1<, PlotStyle Ø 88Thickness@0.02`D<<<D
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groupa = Table@Random@ndistD, 820<D;
groupb = Table@Random@ndist2D, 820<D;

Let's look at our data:

mydata = Transpose@8groupa, groupb<D;
mydata êê TableForm

-11.6082 2.58565
-12.7528 6.0877
12.0938 6.30211
-2.2291 13.1693
2.68462 29.4261
9.23352 6.29066
9.92366 -1.25028
-13.1257 -8.80264
-2.86888 30.3614
0.868362 -11.9505
14.3565 -0.633046
13.6586 21.7459
-6.41646 26.6926
-6.92003 2.53062
-5.70274 4.90664
6.73401 -7.30321
-13.1511 14.2896
20.7136 14.0744
-5.65129 10.8784
-8.64905 6.12983
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Are these groups different?  How can we tell?
One way is to begin to describe the data.  How about if we consider the maximum value and minimum value in each
group?

mydata êê TableForm

-11.6082 2.58565
-12.7528 6.0877
12.0938 6.30211
-2.2291 13.1693
2.68462 29.4261
9.23352 6.29066
9.92366 -1.25028
-13.1257 -8.80264
-2.86888 30.3614
0.868362 -11.9505
14.3565 -0.633046
13.6586 21.7459
-6.41646 26.6926
-6.92003 2.53062
-5.70274 4.90664
6.73401 -7.30321
-13.1511 14.2896
20.7136 14.0744
-5.65129 10.8784
-8.64905 6.12983

Transpose@8Sort@groupaD, Sort@groupbD<D êê TableForm

-13.1511 -11.9505
-13.1257 -8.80264
-12.7528 -7.30321
-11.6082 -1.25028
-8.64905 -0.633046
-6.92003 2.53062
-6.41646 2.58565
-5.70274 4.90664
-5.65129 6.0877
-2.86888 6.12983
-2.2291 6.29066
0.868362 6.30211
2.68462 10.8784
6.73401 13.1693
9.23352 14.0744
9.92366 14.2896
12.0938 21.7459
13.6586 26.6926
14.3565 29.4261
20.7136 30.3614
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BarChart@BinCounts@groupa, 8-30, 30, 10<D, BinCounts@groupb, 8-30, 30, 10<DD

ListPlot@8groupa, groupb<D
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ListPlot@8Sort@groupaD, Sort@groupbD<D
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8Max@groupaD, Min@groupaD<
8Max@groupbD, Min@groupbD<

820.7136, -13.1511<

830.3614, -11.9505<

How about the RANGE of the data (max-min)?

Max@groupaD - Min@groupaD
Max@groupbD - Min@groupbD

33.8646

42.312

Plot@
8Length@Select@Sort@groupaD, Ò < x &DD,
Length@Select@Sort@groupbD, Ò < x &DD<, 8x, -50, 50<D
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Measures of CENTRAL TENDENCY
We begin our discussion with the desire to describe a collection of numbers.  It just so happens that there is two main
ways in which to describe a collection of numbers.  One is called the measure of central tendency and another is the
measure of dispersion or scatter.  We will first look at a number of different measure of each of these.

Mean
In more concrete terms, the mean is quite simply defined as the the sum of all the scores in a sample divided by the
number of scores in the sample.

X =
⁄i xi
n

There are a number of key points about the mean,  First is that the mean is the score around which the deviation scores
sum to zero.  We can take a look at this informally by just making up a random sample, finding the mean of this
sample, and finding the sum of the deviation scores around that mean.
Here we generate 10 random numbers between 0 and 100.

samples = RandomReal@80, 100<, 10D

860.117, 73.7687, 14.6072, 47.3007, 73.9176, 93.7031, 56.0971, 68.5044, 50.3203, 86.0446<

We can find the mean quite easily using the equation (1).  We can check this with Mathematica's built in Mean[ ]
function.  First, we can find the sum of all the samples.

sumsamples = Apply@Plus, samplesD
meanbyhandsample = sumsamples ê Length@samplesD

624.381

62.4381

Now, we can check this with Mathematica.

meansamples = Mean@samplesD

62.4381

meansamples == meanbyhandsample

True

Now that we know the mean, lets find the deviations from the mean for each sample.  What we to know is how far
each indivdual score is from the mean.  Fortunately, this is very simple to express in Mathematica.
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deviations = samples - meansamples

8-2.32103, 11.3306, -47.8309, -15.1374,
11.4795, 31.265, -6.34099, 6.06631, -12.1177, 23.6065<

Now lets add up all the deviations to see if the do indeed sum to zero.

Apply@Plus, deviationsD

-2.84217 µ 10-14

Well, it is not quite zero, but that is because Mathematica has quite a bit of precision, but anything to the power of -14
is close enough to zero for us.
A second important property of the mean is that it is the score for which the squared deviations of the sample is a
minimum.  Imagine we were to find the deviations for each sample from the mean, and square it,  then add these
numbers up.  What this property of the mean "means" is that the mean will minimize the squared deviations value.  

We can take a look at this also. Lets take another random sample of 100 scores this time and find the sum of squared
deviations for a range of values.  We will see that if we choose the mean this value will be at a minimum.

Clear@samplesD
Clear@fD
Clear@funcD
samples = RandomReal@80, 100<, 100D;
f@x_D := Plus üü Hsamples - xL2;
func = Plot@f@xD, 8x, -100, 200<D
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So we can see that the sum of squared deviation looks like a regular parabola which a minimum value somewhere
around 50.  Well, we can figure out exactly what the minimum of this function is by finding the mean of our sample.

Clear@samplemeanD
samplemean = Mean@samplesD

54.3759

If we plot this point on the graph we can see that it is in fact the minimum. 
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Clear@pointD
point = ListPlot@88samplemean, f@samplemeanD<<,

PlotStyle Ø 8PointSize@0.02`D, Red<, DisplayFunction Ø IdentityD;
Show@8func, point<, DisplayFunction Ø $DisplayFunctionD
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The big red dot is the mean superimposed on the function of the sum of squared deviaions.

A final note about the mean is that it is sensitive to outliers in the data.  We should all be aware of how one excep-
tional student can blow the curve for the whole class.  It is important in statistical analysis to take onliers out under
only extremely justified reasons.  Lets take a quick look at an example of this.  We are going to repeat this experiment
with the median in the mode in the next section so we can compare the relavtive sensitivity of the mean, median, and
mode to outliers.

Clear@samplesD;
samples = RandomReal@80, 100<, 100D;
Mean@samplesD

51.3902

First we find the mean of 100 random numbers.  Then we can add one really crazy outlier, 1000 and see how it affects
the mean.

AppendTo@samples, 1000D;
Mean@samplesD

60.7823

Wow, if shot up quite a bit!  In the next sections we can see how sensitive the median and mode are to this type of
phenomena in our data.

Median
The median is the "middle" score.  Half the scores in your sample will be above the median and half will be below it.

Lets take a look a 10 random number and find the median score.  Five of the numbers should be above the median and
5 should be below it.
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samples = RandomReal@80, 100<, 11D;
mymedian = Median@samplesD
sorted = Sort@samplesD

37.5484

820.9391, 26.6797, 27.3063, 29.3753, 34.3301,
37.5484, 66.2146, 77.6886, 78.8282, 85.7355, 98.2178<

As we can see from the sorted version of the list this is true.  The only thing to remember about the median is that if
there is a even number of scores in your sample, then the median is defined as the average of the two middle scores.
In this case, the median is the score half way between the 5th and 6th sorted score.  We can check to verify.

median = Hsorted@@5DD + sorted@@6DDL ê 2
median == mymedian

The median minimizes the sum of the absolute deviations around itself.  In the same way as we showed that the mean
minimizes the sum of squared deviations of the sample, we can show that the median does the same for the absolute
deviations. (the absolution deviations are the absolute value of the deviation around a score.)

Clear@samplesD
Clear@fD
Clear@funcD
samples = RandomReal@80, 100<, 100D;
f@x_D := Plus üü Abs@samples - xD;
func = Plot@f@xD, 8x, -100, 200<D
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samplemedian = Median@samplesD

58.9318
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Clear@pointD
point = ListPlot@88samplemedian, f@samplemedianD<<,

PlotStyle Ø 8PointSize@0.02`D, Red<, DisplayFunction Ø IdentityD;
Show@8func, point<, DisplayFunction Ø $DisplayFunctionD
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As we can see, once again, the median is the minimum value of the function devided by the sum of squared deviations.

So how sensitive is the median to outliers.  Lets perform our ourlier test and see.

Clear@samplesD;
samples = RandomReal@80, 100<, 100D;
Median@samplesD

49.7976

AppendTo@samples, 1000D;
Median@samplesD

49.8329

So the median went up by just about 1 whereas the mean went up by 20 to a outlier at 1000!!  The median is thus less
affected by extreme scores than the mean.

Mode
The mode is simple the most frequent score.  If you wanted to guess an individual score and wanted to be exactly right
the most, guess the mode.  Otherwise the mode isn't that interesting.
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Measures of DISPERSION OR SCATTER
Generally, we consider the measure of central tendency to be the overall magnitude of socres in the group of scores.
This might be something like the DC level in a sinusoid.  Individual scores in our sample will be distributed around
this measure of central tendency.  Thus, we can use the average distance of scores away from the mean as our measure
of dispersion.  If we use the mean as our measure of central tendency then this average will obviously be zero.  Instead
we can square each deviation score and then take the average.  This value is called the variance or mean squared
deviation score.

Variance

s2 =
⁄i Hxi - xL2

n- 1

s2=
⁄i Hxi - xL2

n- 1
randomlist = RandomReal@80, 10<, 10D

87.31347, 4.88155, 2.24012, 8.07227,
1.61297, 7.38737, 2.18041, 7.87216, 1.37213, 4.78341<

Apply@Plus, Hrandomlist - Mean@randomlistDL^2D

Length@randomlistD - 1
Variance@randomlistD

7.60883

7.60883

Standard Deviation
The variance is great but the units of it are the squared values of our observations in the sample.  For example, if we
had a collection of lengths (in meters, m), then the variance would be expressed as m2.  Instead, we can take the square
root of the variance to get what is called the standard deviation.

s = s2 =
⁄i Hxi - xL2

n- 1

presentation.nb   11



s = s2 =
⁄i Hxi - xL2

n- 1
Apply@Plus, Hrandomlist - Mean@randomlistDL^2D

Length@randomlistD - 1

StandardDeviation@randomlistD

2.75841

2.75841

Another measure is the average deviation.  To calculate this value, we take the absolute value of each deviation score.
This is the true average "distance" of each point in our sample from the mean.

Apply@Plus, Abs@randomlist - Mean@randomlistDDD

Length@randomlistD

2.30942

Mathematica provides a nice function called the DispersionReport[] which calculates a number of dispersion measures
at once.

DispersionReport@randomlistD

8Variance Ø 10.2239, StandardDeviation Ø 3.19749, SampleRange Ø 9.14665,
MeanDeviation Ø 2.30942, MedianDeviation Ø 1.28867, QuartileDeviation Ø 1.28867<

A final measure of dispersion is the standard error of the mean which is calculated by dividing the standard deviation
by the square root of the number of values in the sample.

StandardDeviation@randomlistD ì Length@randomlistD

StandardErrorOfSampleMean@randomlistD

1.01113

1.01113
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Combining information from two samples
If  we want to combine information from two groups drawn from the same population,  we can use the following
formula for what is known as the "pooled" mean and "pooled" variance.  Basically, they just reflect the combined
mean of the two group.  However, instead of going back and adding everything up again, you can just use the size of
each group (n) and the mean/std. dev. to compute it.

Pooled Means
x12 =

n1 x1 + n2 x2
n1 + n2

For example, lets make two random samples and verify the above:

sample1 = RandomReal@80, 1<, 10D;
sample2 = RandomReal@80, 1<, 10D;
bothsamples = Flatten@Append@sample1, sample2DD;

HMean@sample1D - Mean@sample2DL ì

SqrtB
Variance@sample1D + Variance@sample2D

2
F * Sqrt@2 ê 10D

0.197409

MeanTest@sample1 - sample2, 0, FullReport Ø TrueD
MeanDifferenceTest@sample1, sample2, 0, FullReport Ø True, EqualVariances Ø TrueD

:FullReport Ø
Mean TestStat Distribution
0.030678 0.216568 StudentTDistribution@9D

, OneSidedPValue Ø 0.416687>

:FullReport Ø
MeanDiff TestStat Distribution
0.030678 0.197409 StudentTDistribution@18D

, OneSidedPValue Ø 0.42286>

Mean@sample1D

0.471538

Mean@sample2D

0.44086

Mean@bothsamplesD

0.456199
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Mean@sample1D + Mean@sample2D

2

0.456199

You  see  that  when  the  size  of  the  same  (n's)  the  pooled  mean  is  just  the  average  of  the  two
because:

x12 = n x1+n x2
n+n

= nHx1+x2L
2 n

= Hx1+x2L
2

You  see  that  when  the  size  of  the  same  (n's)  the  pooled  mean  is  just  the  average  of  the  two
because:

t = x1-x2
së n

t = x1-x2
s2ën

t = x1-x2
s2I 1n M

t = x1-x2
s122I 1n1+

1
n2 M

t = x1-x2

s12 1
n1+

1
n2

t =
n
2 Hx1-x2L
s12

t =
n
2 Hx1-x2L

2

s122

14   presentation.nb



You  see  that  when  the  size  of  the  same  (n's)  the  pooled  mean  is  just  the  average  of  the  two
because:

t = x1-x2
së n

t = x1-x2
s2ën

t = x1-x2
s2I 1n M

t = x1-x2
s122I 1n1+

1
n2 M

t = x1-x2

s12 1
n1+

1
n2

t =
n
2 Hx1-x2L
s12

t =
n
2 Hx1-x2L

2

s122
We  might  be  tempted  to  do  the  same  experiment  with  the  variance/standard  devia-
tion:

s122 = Hn1-1L s12+Hn2-1L s22
Hn1-1L+Hn2-1L

if n is equal we get

s122 = Hn-1L s12+Hn-1L s22
Hn-1L+Hn-1L

=
Hn-1L Is12+s22M

2 Hn-1L

=
Is12+s22M

2
but let's try:
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We  might  be  tempted  to  do  the  same  experiment  with  the  variance/standard  devia-
tion:

s122 = Hn1-1L s12+Hn2-1L s22
Hn1-1L+Hn2-1L

if n is equal we get

s122 = Hn-1L s12+Hn-1L s22
Hn-1L+Hn-1L

=
Hn-1L Is12+s22M

2 Hn-1L

=
Is12+s22M

2
but let's try:

Variance@sample1D + Variance@sample2D

2
== Variance@bothsamplesD

False

Since the variances in the case described above are the moments calculated around their own respective sample means,
it doesn't match the variance for the two samples treated as one.

Variance@sample1D + Variance@sample2D

2
Variance@bothsamplesD

0.120751

0.114643
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