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Humans routinely generalize universal relationships to unfamiliar instances. If
we are told ‘‘if glork then frum,’’ and ‘‘glork,’’ we can infer ‘‘frum’’; any name
that serves as the subject of a sentence can appear as the object of a sentence. These
universals are pervasive in language and reasoning. One account of how they are
generalized holds that humans possess mechanisms that manipulate symbols and
variables; an alternative account holds that symbol-manipulation can be eliminated
from scientific theories in favor of descriptions couched in terms of networks of
interconnected nodes. Can these ‘‘eliminative’’ connectionist models offer a genu-
ine alternative? This article shows that eliminative connectionist models cannot ac-
count for how we extend universals to arbitrary items. The argument runs as follows.
First, if these models, as currently conceived, were to extend universals to arbitrary
instances, they would have to generalize outside the space of training examples.
Next, it is shown that the class of eliminative connectionist models that is currently
popular cannot learn to extend universals outside the training space. This limitation
might be avoided through the use of an architecture that implements symbol manipu-
lation.  1998 Academic Press

1. INTRODUCTION

Humans routinely generalize universal relationships to unfamiliar in-
stances. If we are told ‘‘if glork then frum,’’ and ‘‘glork,’’ we can infer
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‘‘frum’’ (Smith, Langston, & Nisbett, 1992). If all gronks are bleems, and
all bleems are blickets, we can infer that all gronks are blickets. If we hear
a new name, Dweezil, used as the subject of a sentence, we can automatically
use it as the object of another sentence (Chomsky, 1957). If blicket is the
stem of a verb, blicketing is the progressive form of that verb (Prasada &
Pinker, 1993). As Fodor and Pylyshyn (1988, p. 3) put it, ‘‘the ability to
entertain a given thought implies the ability to entertain thoughts with seman-
tically related contents’’; that is, the mind is systematic in its ability to gener-
alize abstract relationships.

1.1. Accounting for Universals

Accounting for how the mind extends these universals is an important
project for cognitive science. One popular view, advocated by Fodor (1975)
and Newell (1980), assumes that universals are extended through the action
of symbol-manipulating machinery. Advocates of symbol-manipulation sup-
pose that there are mentally represented rules that describe relationships be-
tween variables, that those variables may be instantiated with particular in-
stances, and that there are operations such as copying and concatenation that
perform computations on variables. For instance, the process of forming the
regular past tense of an English verb might involve a mechanism that instanti-
ates the variable verb stem with an instance, say fax, and an operation that
combines that instance with the -ed morpheme, yielding faxed (e.g., Marcus
et al., 1995).

While the view that the mind manipulates variables is widespread in lin-
guistics and artificial intelligence, it is not a view that is uniformly accepted.
For example, Plaut, McClelland, Seidenberg, and Patterson (1996) wrote that

A rule-based approach has considerable intuitive appeal [but. . .] An alternative
comes out of research on connectionist or parallel distributed processing networks,
in which computation takes the form of cooperative and competitive interactions
among large numbers of simple, neuron-like processing units. (p. 56)

This alternative view, which Pinker and Prince (1988) called eliminative
connectionism,1 has its roots in work such as the connectionist model of
Rumelhart and McClelland (1986) describing how children learn to inflect
(English) verbs for the past tense. Their aim was to provide

a distinct alternative to the view that children learn the rule of English past-tense
formation in any explicit sense [. . . by showing] that a reasonable account of the
acquisition of past tense can be provided without recourse, if according to style, to
the notion of a ‘rule’ as anything more than a description of the language.

1 Some eliminative connectionist researchers acknowledge that rules play some rule in cog-
nition, but suggest that rules are restricted to ‘‘conscious rule use’’ or ‘‘deliberate, serial rea-
soning.’’
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Although eliminative connectionist models differ in their details, they share a
common design philosophy (sometimes ascribed to the framework of Parallel
Distributed Processing) that is probably familiar to most readers. The task
of each model is to learn a mapping from an input vector (a set of nodes
with activation values) to an output vector (a second set of nodes with activa-
tion values), on the basis of a set of training examples, with feedback pro-
vided by an external teacher.2 Input and output nodes typically encode fea-
tures, such as the presence or absence of a word, a sound, or an object. Input
and output encoding schemes either can be localist or distributed. In localist
representations, each input node corresponds to a specific word or concept,
and only one input node is activated at a given time. In distributed representa-
tions, the inputs are encoded by sets of nodes, with each input node corre-
sponding to a feature; an individual entity corresponds to a set of simulta-
neously activated features that typically represent subcomponents such as
phonological or semantic units. For example, in the past tense model of Hare,
Elman, and Daugherty (1995), the word bid would be represented by the
simultaneous activation of three nodes, the nodes corresponding to b in the
onset position, i in the nucleus position, and d in the coda position.

Two kinds of network architectures that are commonly used in arguments
for eliminative connectionism are feedforward networks (e.g., Rumelhart,
Hinton, & Williams, 1986b) and simple recurrent networks (Elman, 1990).
Feedforward networks (see Fig. 1) are networks that contain a layer of input
units, zero or more layers of hidden units (i.e., units that are neither input
nor output units), and a layer of output units; the term feedforward indicates
the fact that activation percolates in only one direction. The weights in these
models are usually initially set to random values and then adjusted through
the application of an error-correction algorithm, such as back-propagation
(Rumelhart et al., 1986b), that computes the difference between the actual
output and some target output.

Simple recurrent networks (see Fig. 2) resemble feedforward networks,
but are enhanced with a ‘‘recurrent’’ layer of context units. These context
units receive input from the hidden units and feed back into the hidden units,
allowing simple recurrent networks to keep track of temporal sequences. In
both types of models, the response to a novel item depends in part on the
similarity of that input to those input–output pairs on which the model has
been trained.

1.2. Preliminary Evidence for Eliminative Connectionism

Although there have been some ‘‘a priori’’ arguments for eliminative con-
nectionism, none are convincing. For example, some investigators have sug-

2 There are other types of connectionist models such as self-organizing maps (Kohonen,
1984), and reinforcement learning models in which the model is given some input and a
feedback signal but not detailed information about the intended output; but since these have
not been used to account for the generalization of universals, I will not discuss them further.



246 GARY F. MARCUS

FIG. 1. Feedforward network. Input units are drawn at the bottom; output units are drawn
at the top. Connections between nodes are drawn as arrows.

FIG. 2. Simple recurrent network. The context layer consists of the units marked c1 and
c2. Connections from h1 to c1 and from h2 to c2 are fixed at 1.0; all other weights are modifi-
able. See text for further details.
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gested that symbolic models are incompatible with learning and cannot
represent quantitative information, but in fact canonically symbolic architec-
tures such as ACT-R (Anderson, 1983) and SOAR (Newell, 1990) routinely
do both. Others have suggested that eliminative connectionist models are
more biologically plausible than symbolic models, but the back-propagation
algorithm that eliminative connectionist models typically rely on is clearly
not biologically plausible (Crick & Asunama, 1986; Smolensky, 1988).

Others have emphasized the ability of connectionist networks to approxi-
mate any function, but while it is true that in principle certain classes of
networks are universal function approximators, such proofs may have little
relevance to psychology. Such proofs do not show that a particular network
with fixed resources (say a three-layer network with 10 input nodes, 10 hid-
den units, and 10 output nodes) can approximate any given function.3 Instead,
these proofs merely establish that for any given function, some network with
some set of weights and connections can approximate that function. Further-
more, these proofs only pertain to what networks can represent, not what
they can learn.

Still others have argued that eliminative connectionist models are more
parsimonious than symbolic models, but these models have many free pa-
rameters, including the number of nodes, the ways in which those nodes are
interconnected, and the learning algorithm. Hence it is hardly clear that they
provide a more parsimonious account (McCloskey, 1991). Moreover, espe-
cially because biological systems are clearly complex, constraining ourselves
a priori to just a few mechanisms is probably not wise. As Francis Crick
(1988, p. 138) put it, ‘‘While Occam’s razor is a useful tool in physics, it
can be a very dangerous implement in biology.’’

Because such prior considerations do not militate in favor of (or against)
eliminative connectionism, we must turn to other sorts of evidence, espe-
cially to detailed consideration of eliminative connectionist models. Advo-
cates and critics of eliminative connectionism agree that it is crucial to deter-
mine precisely what sorts of problems lie within the scope of eliminative
connectionist models. This paper is a first step in that direction.

1.3. Preview

Any problem-solver that cannot entertain an infinite number of possibili-
ties simultaneously must order some hypotheses before others (for a related
point, see Goodman, 1955). The learner’s tendency to choose some hypothe-
ses over others is sometimes referred to as the learner’s ‘‘hypothesis space

3 The cascade-correlation algorithm (Fahlman & Lebiere, 1990) is an algorithm which dy-
namically adds hidden nodes as necessary. In the limit, given unbounded resources, a network
using that algorithm is guaranteed to model any function (within a restricted but broad class),
but there is no guarantee that such a network can find an adequate solution given a plausible
number of training examples or a plausible number of hidden units.
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bias’’; no learner is entirely free of such a bias. For example, consider the
input–output pairs [2,2], [4,4], [6,6], and [8,8]. What output would corre-
spond to the input 7? This is a matter of induction, not deduction; in principle,
any output is possible. A human would make the induction that the output
7 is most plausible (perhaps corresponding to the function f(x) 5 x), but a
truly general problem solver would also have to be capable of learning func-
tions such as if x is even then f(x) 5 x, otherwise f(x) 5 (x 2 1), in which
case the output corresponding to the input 7 would be 6.

Eliminative connectionist models could only provide plausible accounts
of human cognition if the inductions that the models made matched the in-
ductions humans made. Earlier research by connectionists working outside
the eliminative connectionist approach suggests that (at least in some do-
mains) unconstrained connectionist networks are not likely to draw human-
like generalizations. For example, Denker et al. (1987, p. 877) wrote that

Since antiquity, man has dreamed of building a device that would ‘‘learn from exam-
ples’’, ‘‘form generalizations’’, and ‘‘discover the rules’’ behind patterns in the data.
Recent work has shown that a highly connected, layered network of simple analog
processing elements can be astonishingly successful at this, in some cases. [But] . . .
the symmetric, low-order, local solutions that humans seem to prefer are not the
ones that the network chooses from the vast number of solutions available; indeed,
the generalized delta method [used in most eliminative connectionist models] and
similar learning procedures do not usually hold the ‘‘human’’ solutions stable against
perturbations.

Concern about whether eliminative connectionist networks can adequately
generalize has been central to most critiques of eliminative connectionism,
including Fodor and Pylsyhyn (1988), Hadley (1994), Marcus et al. (1995),
Prasada and Pinker (1993), and Pinker and Prince (1988). In a suggestion
that this article will concur with, Pinker and Prince (p. 176) argued that an
important limit on eliminative connectionist models is that they

. . . do not easily provide variables that stand for sets of individuals regardless of
their featural decomposition, and over which quantified generalizations can be made.

Similar arguments have been made within less radical quarters of the connec-
tionist community (Barnden, 1984, 1992; Dyer, 1995; Shastri & Ajjana-
gadde, 1993; Sun, 1992; Touretzky, 1991; Touretzky & Hinton, 1985). For
instance, Touretzky (1991, p. 21) argued that

The problem with pattern transformers is that they require an unreasonable amount
of training in order to generalize correctly. When the transformation function to
be induced involves very high-order predicates [in the (Minsky & Papert, 1969)
Perceptrons sense], so that inputs nearby in Hamming space do not necessarily result
in nearby outputs, the training set must include almost every possible input/output
pair.

Simulations by Geman, Bienstock, and Doursat (1992), Pavel, Gluck, and
Henkle (1988), Pazzani and Dyer (1987), Prasada and Pinker (1993), De-
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Losh, Busemeyer, and McDaniel (1997), and Busemeyer, McDaniel, and
Byun (1997) are consistent with the suggestion of Denker and others that
eliminative connectionist networks often face difficulty in drawing human-
like generalizations.

A principal goal of the current paper is to characterize more precisely one
class of problems that pose special difficulties for contemporary eliminative
connectionist networks. In particular, this paper extends previous findings
about the ability of networks to generalize by proving that a large class of
models does not generalize a large class of universals in the ways that hu-
mans do. Importantly, this argument will be about learning, not representa-
tion; thus, although the class of models that I describe will be able to repre-
sent these universals, they will not be able to learn them.4 The argument
that will be presented here thus takes a different form from the argument of
Minsky and Papert (1969) that two-layer perceptrons could not even repre-
sent functions like exclusive-or.

1.4. Road Map

The remainder of the paper is structured as follows. First, as preliminaries,
I briefly sketch the framework of symbol-manipulation as it applies to vari-
able manipulation (Section 2; for a longer discussion, see Marcus, 1999),
and then discuss the architecture of contemporary eliminative connectionist
models (Section 3).

Section 4 defines the notion of a training space and shows that to general-
ize universals to untrained items, contemporary eliminative connectionist
networks would need to generalize outside the training space. Section 5
shows that neither feedforward networks nor simple recurrent networks can
generalize outside the training space. Section 6 considers the role of experi-
ence, Section 7 considers alternative connectionist models, and Section 8
concludes.

4 Based on an earlier version of this manuscript, Holyoak and Hummel (in press) argue that
the functions that I describe could not even be represented in an eliminative connectionist
network. Their argument is that the eliminative connectionist network could only represent
the function with respect to some finite set of entities. The difficulty with this argument is
that the same argument could be applied to any finite implementation of any algorithm. For
example, a Turing machine with a finite tape can extend the identity function only to a finite
number of inputs; likewise, a computer program that can only represent numbers up to 264

cannot extend identity to 264 1 1. As such, these sorts of limitations of finiteness cannot choose
between plausible models, symbolic or not, and must apply to humans as well, since humans
have finite resources. (Still, I would agree with Holyoak and Hummel that there is an important
difference between representing a function by providing a complete list of possible input fea-
tures and their corresponding output features and representing a function more parsimoniously
via a placeholder, as in a symbol-manipulating system.)
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2. SYMBOL MANIPULATION

The extension of universals is straightforward in a system that permits
operations over symbolic variables. Symbols are mental encodings of equiva-
lence classes (Abler, 1989; Newell & Simon, 1975; Pylyshyn, 1984, 1986;
Vera & Simon, 1994), which is to say that all members encoded via a particu-
lar symbol are treated equally by some higher level operation (Pylyshyn,
1984, 1986). Symbols can encode either individuals (e.g., Donald Duck) or
categories (e.g., duck or cartoon character), and can encode either atomic
elements (e.g. Superman) or complex combinations (e.g., the tattered but
well-read Mark Twain novels).

Fundamental to the view of symbol-manipulation is a distinction between
instances (tokens) and classes (types) (Fodor, 1975; Jackendoff, 1983; for
discussions of connectionist approaches to types and tokens, see Mozer,
1991; Marcus, 1999). For instance, Daffy is an instance of the class duck;
at the same time, the class duck is not equivalent to the instance Donald.
The class duck is also not equivalent to the set of all actual ducks, since the
class duck also includes fictional ducks, no longer existing ducks, and so
forth.

Given a distinction between instances and classes, it is natural to express
generalizations that hold with respect to classes of entities, such as all ducks
can swim. Rather than specifying individually that Daffy likes to swim, Don-
ald likes to swim, and so forth, one can describe a generalization that does
not make reference to any specific duck, by using a variable. The English
sentence all ducks can swim, for instance, might be translated into the predi-
cate calculus formulation, for all x, if x is a duck, then x can swim. Variables
such as these allow us to express generalizations compactly (Barnden, 1992;
Kirsh, 1987).

The machinery of variables and operations over variables also enables
generalization to novel instances of a class. As soon as an item is assimilated
into a class, that item automatically inherits the privileges of that category.
If Daffy is a member of the class duck, it can be inferred that Daffy can
swim.

In contemporary computers, variables typically refer to registers; these
registers contain either the values of instances of those variables, or pointers
to other registers that contain the values of those instances. Registers them-
selves can be implemented in a variety of physical media, ranging from
Tinkertoys to vacuum tubes to rewritable optical disks.

Although eliminative connectionist models do not incorporate variable-
manipulation, variable-manipulation is not intrinsically incompatible with
connectionism. A branch of connectionism that Pinker and Prince (1988)
dubbed implementational connectionism seeks to understand how symbol-
manipulation and connectionism could be reconciled. The goal of this ap-
proach is to use connectionism as a tool to understand how symbol-manipula-
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tion could be implemented in a neural substrate (e.g., Barnden, 1984, 1992;
Fahlman, 1979; Feldman & Ballard, 1982; Hinton, 1990; Holyoak, 1991;
Holyoak and Hummel, in press; Shastri & Ajjanagadde, 1993; Smolensky,
1995; Touretzky, 1991; Touretzky & Hinton, 1985).

Building a connectionist implementation of variable-manipulation would
entail finding a way to keep variables distinct from their instantiations. One
way to do this is to assign a different node to each variable and to each
instance. For instance, one node might correspond to the variable agent-of-
loving, while another node might correspond to a possible instance of that
variable, such as Peter or John. The binding between an instance and a vari-
able (i.e., the mechanism that indicates how a given variable is currently
instantiated) can then be encoded either by activating the variable and its
current instantiation simultaneously in a common rhythm (Hummel & Bied-
erman, 1992; Hummel & Holyoak, 1997; Shastri & Ajjanagadde, 1993), or,
more generally, by attaching a shared identification code to both the instance
and the variable (Lange & Dyer, 1996). A second way of keeping variables
distinct from instances—analogous to the way in which a computer uses
a memory register to indicate a variable and voltage levels to indicate the
instantiation of that variable—is to use a separate bank of units for each
variable, with the activation values of a given variable’s bank of unit then
representing that variable’s instantiation. For example, one bank of units
might encode the agent-of-loving, another the patient-of-loving.

A complete connectionist implementation of variable-manipulation would
also have to include a mechanism for performing one or more operations
over those instances, such as copying the contents (i.e., the current instantia-
tion) of one variable into the contents of another. Computers do this with
instructions, bits of code that tell the computer what to do with the contents
of some memory register, such as ‘‘place them into another memory regis-
ter’’ or ‘‘compare the contents of register A with the contents of register
B.’’ Crucially, these operations are defined to work over all possible instanti-
ations of those registers, and their performance is indifferent as to whether
the current instantiation is an instantiation that has previously been encoun-
tered. For instance, the copy operation in an 8-bit microprocessor could copy
the string of binary bits [1 1 1 1 1 1 1 1] even if it happened to have
never before encountered a string containing a 1 bit in the rightmost position
of an input string. A connectionist implementation of variable-implementa-
tion would provide a way of performing operations over variables in a con-
nectionist substrate.

3. ELIMINATIVE CONNECTIONISM

3.1. Burden of Proof

An implementational connectionist must not only show that some connec-
tionist model is adequate, but also that the adequate model serves as an im-
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plementation of some reasonable symbol-manipulating algorithm; likewise,
an eliminative connectionist must show not only that some model is ade-
quate, but also that the adequate model is not a covert implementation of
the very symbol-manipulating models that it aims to eliminate.

A full-fledged eliminative connectionist research program would thus in-
clude systematic comparisons between eliminative connectionist models and
symbolic models, showing why the two genuinely differ—a task that is by
no means easy. Part of the reason that the task is not easy is that there are
so many different ways of implementing the algorithm that underlies a given
symbol-manipulating model. For example, as Marr (1982) famously pointed
out, one can implement a (symbol-manipulating) tic-tac-toe-playing model
with a carefully structured set of Tinkertoys. The crucial notion is one of
mapping or correspondence: to show that two models are in some sense
equivalent, one must show that there is a systematic mapping between the
two, both in the predictions they make and in their internal states.

Because mappings can take on so many different forms, showing that a
given device A does not implement the algorithm that underlies some partic-
ular model B is difficult: one can never simply itemize all the possible map-
pings and show that none apply. Still there are ways to show that two models
(or algorithms) differ. One way to establish that model A does not implement
the algorithm underlying model B is by showing that A and B do not make
the same predictions. Another possibility is to show that the intermediate
states of A do not map onto the intermediate states of B. (Strictly speaking,
any given connectionist model can be implemented by some symbol-manipu-
lation model, such as the computer program that simulates the model. The
question is thus not really whether a given model can be implemented by
any symbol-manipulating algorithm, but rather whether the proposed con-
nectionist model systematically maps onto some reasonable symbol-manipu-
lating alternative. A carefully stated argument for an eliminative connec-
tionist model of some domain should thus specify some set of reasonable
symbol-manipulating models and show why that connectionist model does
not map onto any of that set of models.)

At this point, one might wonder whether there really are any eliminative
connectionist models; scholars such as Lachter and Bever (1988) have ar-
gued that some apparent eliminative connectionist models covertly imple-
ment symbol-manipulation. Indeed, even the most radical connectionist mod-
els incorporate some elements of symbol-manipulation, including the use of
symbols. A given node, for instance, might be activated if and only if the
word ‘‘cat’’ appears in the input stream; such a node thus defines an equiva-
lence class of utterances of the word ‘‘cat,’’ hence it serves as a symbol
(Marcus, 1999; Vera & Simon, 1994). Likewise, it could be argued that many
apparent eliminative connectionist models incorporate distinctions between
variables (banks of nodes) and instances (represented by their activity levels).
Still, there are at least two important ways in which standard parallel distrib-
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uted processing models clearly differ from the standard picture of symbol-
manipulation. First, these models differ with respect to their treatment of
compositionality (a topic that is outside the scope of this paper; for discussion
see Fodor & Pylyshyn, 1988; Marcus, 1999). Second, these models differ
with respect to their treatment of operations over variables, the subject of
the current article.

3.2. How Eliminative Connectionist Models Work

Whereas variable-manipulating systems include a facility for representing
abstract relationships between variables, such as x 5 y 1 2, or past 5 stem
1 ed, eliminative connectionist models such as feedforward networks and
simple recurrent networks do not include any explicit representation of a
relationship between variables.

Instead, the mapping between input and output is represented through the
set of connection weights. As mentioned in the Introduction, the connection
weights in these models are usually initialized to random values, rather than
prespecified in advance. These weights are subsequently adjusted through
training with the back-propagation algorithm or one of its variants (e.g., Fahl-
man & Lebiere, 1990). Such algorithms compute error with respect to some
target pattern, and adjust connection weights according to that measure and
a mechanism for ‘‘blame-assignment’’ that distributes the error among the
units feeding a given node. The motivation for these rules, as McClelland
and Rumelhart (1986, p. 214) put it, is to

provide very simple mechanisms for extracting regularities from an ensemble of
inputs without the aid of sophisticated generalization or rule-formulating mecha-
nisms that oversee the performance of the processing system.

Moreover, as McClelland and Rumelhart note in the same paragraph

These learning rules are completely local, in the sense that they change the connec-
tion between one unit and another on the basis of information that is locally available
to the connection rather than on the basis of global information about overall perfor-
mance.

In other words, eliminative connectionist models replace operations that
work over variables with local learning, changing connections between indi-
vidual nodes without using ‘‘global information.’’

Dozens of models that follow this overall strategy can be found in journal
articles, books, and conference proceedings. To my knowledge, virtually all
current eliminative connectionist models adopt this strategy. (Section 7 con-
siders whether eliminative connectionism could be supported through other
kinds of models.) The remaining discussion will concentrate on three running
examples, chosen for their representativeness and influence. Nothing rests
on these particular examples, however; many similar models could be used
to illustrate the same points.
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FIG. 3. Sketch of the family tree model of Hinton (1986). Not all units or all connections
are shown. Circles indicate units; rectangles indicate hidden layers consisting of multiple units.
The input to the model is indicated by activating one agent unit and one relationship unit; the
set of patients corresponding to that agent and relationship are activated within the output
bank. For example, to encode the fact that Penny is the mother of Arthur and Victoria, the
input units corresponding to the patient Penny and the relationship mother, and the output
units Arthur and Victoria would be activated.

3.2.1. The family tree model. One important and influential early elimina-
tive connectionist model was the ‘‘family tree’’ model of Hinton (1986),
which aimed to learn abstract relationships like sister and mother. The
model, sketched in Fig. 3, was trained on facts of the form ‘‘X is the Y of
Z,’’ such as Penny is the Mother of Victoria and Arthur. These facts were
drawn from two isomorphic family trees (e.g., the second tree contained the
same number of people and the same number of relationships in each genera-
tion as the first). In all, there were 104 possible facts; in one test run, the
model was trained on 100 of these 104 facts and was able to generalize to
3 of the remaining 4 facts; in the other test run (with a different set of random-
ized initial weights), the model was trained on the same 100 facts and was
able to generalize to all four of the remaining facts.

3.2.2. The balance-beam model. Another important, influential model is
the model of the development of children’s understanding of the balance-
beam by McClelland (1989), which Shultz et al. (1995) described as ‘‘the
pioneering attempt to apply modern connectionist techniques to develop-
mental problem solving tasks.’’ In this study, a network is confronted with
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FIG. 4. The balance beam task.

a version of the balance beam problem that contains five equally spaced pegs
on either side of a fulcrum, depicted here in Fig. 4.

The network, depicted in Fig. 5, is a feedforward network with a bank of
20 input units, 4 hidden units, and 2 output units. The output units represent
the relative weight on the left and right sides of the balance beam. The 20
input units are divided into two banks of 10, one for the left side of the
beam, one for the right. Each bank of 10 is in turn subdivided into a bank
of 5 units representing the number of weights on some peg and a bank of
5 units representing the distance that the weight-bearing peg is from the
fulcrum.

McClelland trained this network on all 625 possible inputs. (625 5 5 pos-
sible positions for the left object ∗ 5 possible weights for the left object ∗

FIG. 5. McClelland’s balance beam model. See text for explanation.
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5 possible positions for the right object ∗ 5 possible weights for the right
object). After sufficient training, the model was able to produce accurately
outputs corresponding to whether the balance beam will tip.

3.2.3. The sentence-prediction model. A third example is the simple recur-
rent network (henceforth, SRN) account of learning aspects of language by
Elman (1990, 1991, 1993). In a recent survey of articles published from 1990
to 1994 (Pendlebury, 1996), the paper that introduced the model (Elman,
1990) was the most widely cited paper in psycholinguistics, and the 11th
most cited paper in psychology.

The simple recurrent network is especially important because it has been
used to motivate an argument that the problems of variable binding may
simply be irrelevant to adequate accounts of cognition. Garson (1993) used
the SRN to propose

an alternative connectionist paradigm that takes the project of understanding [vari-
able] binding much less literally . . . solutions to the ‘‘binding problem’’ emerge
from weight selection in a general purpose architecture . . . This line of research . . .
shows at least that some implicit binding can be handled without special architecture.

The task of this network is prediction: given a string of input items such as
words, the model tries to predict what might come next. These sequences,
produced by external symbolic grammar, are presented to the model in a
word-by-word fashion, one word per sweep through the network. At each
time step, the model is presented with a given word in a sentence; the target
(i.e., the pattern on which the network is trained) is the subsequent word in
that sentence. (The sequential device that governs which word is presented
to the model at each time step is currently implemented in a symbol-manipu-
lating algorithm, one that would ultimately have to be replaced by some
device that does not manipulate symbols.) The network is not trained on all
possible continuations simultaneously, but rather on only one continuation
in any given training step. A somewhat simplified sketch of the model is
given in Fig. 6.

The network contains an input layer, a hidden layer, a context layer, and
an output layer (some but not all versions of the model also include two
additional ‘‘transducer’’ layers). At the conclusion of each time step, the
contents of the hidden layer are copied (using fixed rather than trained con-
nections) to a context layer; the contents of the context layer then feed back
into the hidden layer at the next time step, providing the network with access
to temporal information. Input words are encoded locally; each word is repre-
sented by a single unit; the input vector is a string of 0’s with a single 1
corresponding to the node that is activated by that word. Output nodes corre-
spond to individual words. The network is, at any given time step, trained
on an output vector that contains a string of 0’s with a single 1 encoding
the actual continuation word. At any given point, the network will tend to
activate more than one output. Although one could plausibly interpret such
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FIG. 6. Sketch of a simple recurrent network used to predict sequences of words. The
actual model had more input and output nodes. Rounded rectangles indicate sets of units.
Weights from hidden units to context units are fixed at 1.0; all other weights are modifiable.
See text for further details.

an output as a blend between different words, Elman draws a different inter-
pretation that is designed to capture the fact that more than one continuation
is possible. In particular, Elman takes the output vector to be a ‘‘likelihood
vector’’ according to which the activation of each node corresponds to the
relative probability of that given word appearing as a continuation.

This network has been applied to a variety of temporal learning tasks. For
example, Elman trained the network on a ‘‘semi-realistic artificial grammar’’
that included a variety of dependencies such as subject–verb agreement (cats
love vs cat loves). Elman argued that dependencies (as in the relationship
between the subject and the verb) were particularly important because they
figured prominently in earlier arguments against statistical models that
lacked explicit grammatical rules (e.g., Miller & Chomsky, 1963). To the
degree that the model genuinely captured the underlying abstract relation-
ships, it might undermine those earlier arguments.

Once the model was trained, it was often able to predict plausible continua-
tions for strings such as cats chase , and even more complicated strings
such as boys who chase dogs —just the sort of cases that Miller and
Chomsky used to argue against earlier statistical models.

It is difficult, however, to evaluate the model’s performance. The primary
quantitative measure of the SRN’s performance that Elman provided was to
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compare which continuations the model predicts with what actually comes
next within a test corpus. There are two problems with this measure: first,
since the test corpus was ‘‘generated in the same way as the . . . training
corpus’’ (1991, p. 204), it is not clear to what degree the test corpus actually
examined the model’s ability to generalize as opposed to its ability to memo-
rize (Hadley, 1994). Second, Elman provided no formal way of comparing
how well the model did on this task with how well a human might do on a
comparable task. What I will show in Section 5 is that the SRN network
does not derive the same abstraction as people do and that what it can learn
is severely restricted in its generality.

4. TRAINING SPACE

4.1. Definitions

In what follows, it is necessary to distinguish two kinds of generalization,
generalization that is within a training space, and generalization that is out-
side that training space. What counts as being within the training space will
depend on two things: the set of training examples and the representational
scheme.

The following discussion assumes that each input to a network is com-
posed of a set of n Boolean features, such as [1/2animate]. This set of n
features can be used to define an n-dimensional space that I will call the
input space. It is clear that any possible input item corresponds to a point
somewhere in the input space. The training set is the set of points in the
input space on which the model is trained.

Let us call each binary value of a feature a feature value. For example,
let us treat [1animate] and [2animate] as two distinct feature values; each
input will be composed of exactly n feature values. An input that is not in
the training set but that is composed entirely of feature values that appeared
within the training set lies within the training space. Any input that includes
a feature value that did not appear within the training set lies outside the
training space (e.g., if all the model’s inputs are [1animate], any item con-
taining the feature value [2animate] would lie outside the training space).
The training space is thus a subspace contained inside the input space, de-
limited by the values of the features that appeared in the training set.5

Given these definitions, one can distinguish between test items that lie
within the training space (that is, those items that are comprised purely of
feature values that a model has been trained on), and those test items that

5 While many items within the training space will be either items from the training set or
linear combinations of items from the training set, the training space also includes items that
are not linear combinations of input items. For example, if the training set were the vectors
[101] and [011], the item [111] would not be a linear combination of the input items but
would lie within the training space.
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lie outside the training space (that is, those items that include feature values
that the model has not been trained on). Informally, generalizations within
the training space can be thought of as interpolations, while generalizations
outside the training space can be thought of as extrapolations.

4.2. Problems That May Not Require Going beyond the Training Set

Not every problem requires a learner to go outside the training space, or
even outside the training set. Some cognitive tasks (e.g., memorizing tele-
phone numbers) may be appropriately cast as problems in which a learner
need not generalize at all. In such tasks, it may suffice to merely memorize
the training set. (Eliminative connectionist networks with sufficient resources
can, given sufficient training, memorize any training set in which each input
corresponds to exactly one output. Among the open questions is whether
such networks can master such training sets in a plausible number of trials,
and whether they can do so without excessive interference, e.g., McClos-
key & Cohen, 1989.)

Likewise, tasks in which there is a relatively small number of possible
inputs, e.g., the game of tic-tac-toe, can, in principle, be mastered by mere
rote memorization. (In a standard 3 by 3 tic-tac-toe board, there are 39 possi-
ble positions, including rotations, reflections, and impossible positions.)

4.3. Problems That May Not Require Generalization beyond the
Training Space

Other cognitive tasks clearly involve some degree of generalization.
Among such tasks, some may demand only that a learner may generalize to
items that are wholly comprised of features on which the learner has task-
relevant experience. Such tasks would not require generalization outside the
training space. For example, in some areas of motor control and skill learn-
ing, it seems plausible that a learner might not be able to generalize outside
the training space (for one possible example of such a domain, see Ghahra-
mani, Wolpert, & Jordan, 1996).

Reading is a task that may or may not require generalization outside the
training space. In all current models, some possible words would lie outside
the plausible training space but are nonetheless readable. For example, in
the Seidenberg and McClelland (1989) model, words that contain untrained
phoneme triples (i.e., untrained Wickelphones) would lie outside the training
space. Other models of reading typically treat each syllable with a distinct
set of units. In such models, generalizing to a word that contained more
syllables than any training word would require that the model generalize
outside the training space. Still, the possibility remains that researchers could
eventually discover a way of representing all readable words within a space
in which a network can plausibly be trained. If such a representation existed,
reading might be adequately modeled by an architecture that cannot general-
ize outside the training space.
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4.4. Problems That Do Require a Model to Generalize beyond the
Training Space

In a variety of domains, people can freely generalize. For example, people
can generalize kinship terms (sister, uncle, etc.) to new families or new fam-
ily members, people can understand balance-beam problems with arbitrary
numbers of weights or pegs, and people can generalize grammatical relation-
ships to arbitrary words.6

The ability to freely generalize relationships to arbitrary items is not re-
stricted to conscious rule use (cf., Smolensky, 1988). For example, in care-
fully controlled experiments Tomasello and Olguin (1993) showed that chil-
dren less than 23 months old can take a nonsense noun that they heard used
only as a subject and use it as an object; in this instance, a child is generaliz-
ing a grammatical rule to an arbitrary item, even though it is unlikely that
the child could articulate the relevant rule explicitly. Similarly, my col-
leagues and I (Marcus, Vijayan, Bandi Rao, & Vishton, in press) have found
that even 7-month-old infants appear to be able to generalize abstract lan-
guage-like rules to new words.

In order to capture cases of free generalization to arbitrary items, current
eliminative connectionist models would need to generalize outside the train-
ing space. For example, in the family tree model, each new person is repre-
sented by a new node (and thus a new feature value); generalizing family
relationships to new people would thus depend on generalization outside the
training space. In the balance beam model, each new number of weights is
represented by a new node; generalizing to a balance beam that contained
a new number of weights would thus depend on the ability to go outside the
training space. In the sentence-prediction model, each new word is repre-
sented by a new node (and thus a new feature value); generalizing to a new
word would thus depend on the ability to go outside the training space. Since
humans can freely generalize in these domains, the viability of a given model
depends on whether it can generalize outside the training space.

5. GENERALIZATION OUTSIDE THE TRAINING SPACE

5.1. Evidence from Simulations

Suppose that you were trying to learn the function that is illustrated in
Table 1.

What is the appropriate response to the input pattern [1 1 1 1 1]? Al-
though as an inductive problem, there can be no single correct answer to
this question, in informal testing, I have found that human adults consistently

6 Another, perhaps more subtle linguistic mapping that appears to be depend on the ability
to generalize outside the training space is the relationship between the underlying phonological
form of a word and its surface form (Berent, Everett, & Shimron, 1998).
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TABLE 1
A Sample Function

Training cases

Input Output

0 0 0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1 0 0
0 0 1 1 0 0 0 1 1 0
0 1 0 0 0 0 1 0 0 0
0 1 0 1 0 0 1 0 1 0
0 1 1 0 0 0 1 1 0 0
0 1 1 1 0 0 1 1 1 0
1 0 0 0 0 1 0 0 0 0
1 0 0 1 0 1 0 0 1 0
1 0 1 0 0 1 0 1 0 0
1 0 1 1 0 1 0 1 1 0
1 1 0 0 0 1 1 0 0 0
1 1 0 1 0 1 1 0 1 0
1 1 1 0 0 1 1 1 0 0
1 1 1 1 0 1 1 1 1 0

Note. See text for details.

predict that the output corresponding to the input [1 1 1 1 1] is
[1 1 1 1 1]. Humans generalize this identity or sameness relation freely,
both to cases within and outside the training space. (The test pattern
[1 1 1 1 1] lies outside the training space, because the feature value 1-in-
the-rightmost-position did not appear in the training set.)

Standard eliminative connectionist models generalize this function in a
different way. For example, in a series of simulations, I trained feedforward
networks with 10 input units, 10 output units, and 10 hidden units on an
extended version of the problem shown in Table 1, in which each input string
consisted of 10 binary input digits. In one condition, I trained the network
on all 210 5 1024 possible input patterns; the network readily mastered this
training set. In the other condition, I trained the network only on the even
numbers, leaving the feature-value 1-in-the-rightmost-position—hence all
odd numbers—outside the training space. In this condition, the network
did not generalize identity to the odd numbers; instead, for example, the
network responded to the input [1 1 1 1 1 1 1 1 1] with the output
[1 1 1 1 1 1 1 1 1 0].

The network did not generalize the identity function to odd numbers even
when I varied the learning rate, number of hidden units, the number of hidden
layers, and the sequence of training examples.

It is important to realize that the network’s response is a perfectly reason-
able induction, mathematically consistent with the input. (Note, for instance,
that within the training set, the conditional probability of the rightmost digit
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of the output’s being a ‘‘1’’ is zero.) Thus the network is not ‘‘wrong’’ in
any absolute sense; rather, what is important for present purposes is that the
inductions of the model sharply differ from those made by humans.

In a further experiment, I tested a version of the simple recurrent network
with 13 input units, 13 output units, a layer of 40 hidden units, and a layer
of 40 context units on a problem of identity-over-time. In this task, I pre-
sented the network with a series of sentences such as a rose is a rose, a tulip
is a tulip, and so forth, and then tested the model on another sequence of
the same general form that contained a novel word, a blicket is a .
Whereas humans tend to complete that sequence with the word blicket, the
simple recurrent network did not activate the output unit corresponding to
blicket. In some replications, the network activated other words such as rose
or tulip; in other replications, no word was strongly activated. Which word
(if any) is activated strongly depends on the set of random weights that are
initially assigned.

Other recent experiments have yielded similar results.7 For example, De-
Losh et al. (1997) tested the ability of an eliminative connectionist model
to extrapolate linear, exponential, and quadratic functions, and compared that
result with the extrapolation abilities of human subjects. They found that
although humans were able to extrapolate these functions beyond the range
of trained responses, the eliminative connectionist model that they studied
was not able to extrapolate adequately beyond the range of trained responses.
(A related failure to extrapolate is described in Busemeyer et al., 1997).

Similarly, a person who is trained on examples from the finite state gram-
mar that permits sequences like GFFFFFQLLLLL and GFFFQLLL can use
the abstract structure encoded there to facilitate the learning of a grammar
that shares the same formal structure but has a different lexicon (e.g., a gram-
mar containing strings like PXXXXRTTTT and PXXRTTTT). Such trans-
fers by definition would require going outside the training space in a simple
recurrent network that represented each letter by a unique node. Frank Hong
and I (Hong & Marcus, 1996) found that this transfer effect cannot be mod-
eled by the simple recurrent network, because the network cannot generalize

7 A failure to generalize outside the training space may also have been involved in a some-
what earlier finding, by Prasada and Pinker (1993). Humans appear to be able to extend the
-ed suffixation process to novel words regardless of a word’s similarity to stored examples,
even to words that contain sounds unfamiliar in English, like Jelsin out-gorbacheved Gorba-
chev. In simulations, Prasada and Pinker found that although the Rumelhart and McClelland
(1986) model can in some (though not all) circumstances apply generalizations to novel items
that strongly resemble training items, it encountered difficulty when inflecting input words
that lacked resemblance to trained examples. The network tended to produce weird responses
like fraced as the past tense of the novel word slace, imin as the past tense of smeeb, bro as
the past tense of ploanth, and freezled as the past tense of frilg. Although Prasada and Pinker
did not distinguish between items that were and were not in the training space, it is likely
that the unfamiliar sounding words were outside the training space.
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outside the training space. (Dominey, 1997, appears to have found a similar
result.)

Likewise, an analogical reasoning problem called the Klein 4-group task
requires generalization of geometric relations from one set of items to an-
other set of items, hence generalization outside the training space. While
humans routinely transfer in this task, Phillips and Halford (1997) found
that neither a feedforward network model of this task nor a simple recurrent
network model was able to capture this transfer.

Each of these examples illustrates the inability of feedforward networks
and simple recurrent networks to generalize outside the training space. The
next section explains the mathematics that underlie this limitation.

5.2. Training Independence

In hindsight, the fact that feedforward networks and simple recurrent net-
works that are trained through localist error-correction algorithms are unable
to generalize outside the training space should be unsurprising. Informally,
a unit that never sees a given feature-value is akin to a node that is freshly
added to a network after training. A node that did not participate in training
obviously will not behave in the same way as a node that did participate in
training.

More formally, the reason that these networks cannot generalize outside
the training space can be understood in terms of the equations of the back-
propagation algorithm that adjusts connection weights. First, the equations
of the back-propagation algorithm are such that whenever an input node is
activated at the level of zero, its connections to other nodes remains un-
changed—regardless of what happens with all the connections that feed from
other input nodes. The amount in which a given connection weight that ema-
nates from unit i changes is determined by an equation that includes as a
multiplicative factor the activation level of unit i; thus whenever the activa-
tion level of i is zero, the weight change must be zero, regardless of the
activity levels of other input units. This aspect of the back-propagation algo-
rithm can be called input independence. (An as-yet unproven corollary that
appears to be true is that if during training any given input does not, alone
or in combination with other units, predict the output, that unit will effec-
tively be trained independently of any other input unit.)

Output units are also trained independently from one another. This, too,
follows directly from the equations that define back-propagation. For a given
input–output pair, the weight on the connection from a given input/hidden
unit a to output unit j is adjusted according to the following equations, de-
rived in Rumelhart et al. (1986a),8

8 These equations assume that the output units are activated according to the logistic function
that is used in virtually all multilayer networks.
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change in weight of connection from unit a to output unit j

5 learning rate ∗ error signal (1)

∗ activation of input/hidden unit a,

where

error signal 5 (target for unit j

2 observed activation of output unit j )
(2)

∗ [activation of unit j

∗ (1 2 activation of unit j )].

Crucially, these equations, which change the weights that feed a given output
unit, do not make any reference to the activation levels of the other outputs,
the targets of other outputs, or the weights feeding the other outputs. Conse-
quently, the set of weights connecting one output unit to its input units is
adjusted entirely independently of the set of weights feeding all other output
units, a limitation that can be called output independence.

Generalizations are therefore not transferred from output unit to output
unit. For example, consider the auto-associator model of identity described
earlier in Subsection 5.1: the weights that feed into the output unit corre-
sponding to a novel item are trained independently of the weights that feed
into the other output units. Thus, on any given trial, the target for output
unit A has no impact on the adjustment of the weights the feeds output unit
B; hence there is no transfer between nodes.9

In light of the output independence limitation, one way to understand con-
temporary eliminative connectionist networks is as a set of independent clas-
sifiers (see Touretzky, 1991, for a similar suggestion). That is, each output
unit computes its own classification function. In this way, multilayer net-
works are quite similar to two-layer networks. In a two-layer network, each
output unit computes a (positively or negatively) weighted combination of
the input features; modulo the differences introduced by nonlinear activation
functions in a three-layer network, each output unit computes a positively
or negatively weighted combination of the combinations constructed by the
units that feed it. Thus although adding additional hidden units allows the
network to add additional combinations of features, and adding additional
hidden layers allows the network to exploit combinations of combinations
of features, no such addition allows the network to exploit abstract univer-
sals. Each categorizer (i.e., output unit), from the network’s perspective, is
an entirely separate problem. To learn a general function across all output

9 A somewhat different argument for a similar conclusion is given in Phillips (1994).
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units, the network must have relevant experience on each possible output
unit, a limitation that is entirely unaffected by the introduction of hidden
layers.

Though the training space itself is defined by the nature of the input and
output representations, the limitation applies to a wide variety of possible
representations. Regardless of the input representation chosen (so long as
units represent a finite number of distinct values), there will always be fea-
tures that lie outside the training space. Any feature that lies outside the
training space will not be generalized properly—regardless of the learning
rate, the number of hidden units, or the number of the hidden layers.

5.3. Scope

Training independence applies to simple recurrent networks and feedfor-
ward networks; more generally, it would apply to any model in which each
connection weight was trained independently.

The training independence limitations do not undermine the use of these
architectures in tasks that would not require generalization outside the train-
ing space,10 but do undermine their use in tasks that would require generaliza-
tion outside the training space. For example, consider the family-tree model.
What the model learns about family members that it is trained on will not
generalize to new sets of family members, because the latter cases will be by
definition outside the training space. A human who is told that ‘‘the sibling of
Cain is Abel’’ can immediately infer that ‘‘the sibling of Abel is Cain,’’ but
the family-tree model cannot; it never genuinely abstracts the symmetric
relationship underlying ‘‘sibling.’’ Instead, because of training indepen-
dence, the family-tree model can only simulate that relationship with respect
to a set of heavily trained items.

Similarly, the balance-beam model cannot generalize to balance beams of
a width greater than the balance beams in training or to balance beams that
contain more weights than any of the beams that appeared in training. For
example, if the model is trained only on balance beams of width four, it
cannot reliably distinguish a problem containing a weight on the 5th point left
of center balanced against a weight on the 6th point from the right. Training
independence guarantees that the same problem would hold if the model
were trained on balance beams 100 units wide and tested on balance beams
104 units wide.

10 Although I have shown that current eliminative connectionist models cannot generalize
outside the training space, I have left open the extent to which eliminative connectionist models
can generalize within the training space. Sometimes eliminative connectionist models can
generalize adequately within the training space, sometimes, as in the parity test, conducted
by Clark and Thornton (1997), a given model cannot generalize adequately within the training
space. The ability to draw such generalizations (unlike out-of-training-space generalizations)
depends on the details of how many hidden units are used, what the learning rate is, what the
nature of the function to be learned is, and so forth.
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Likewise, the sentence-prediction model cannot generalize to novel words
any linking relationship in which two items must be identical. While the
‘‘rose is a rose’’ sentences tested above are just a tiny, somewhat artificial
part of language, such linking relationships are pervasive. For example, such
a linking relationship is implicit every time a referential item (e.g., himself )
is linked to an antecedent. Presumably, when we read or hear the word him-
self in a string such as Peter loves himself, we mentally reactivate some
mental representation of Peter. The simple recurrent network cannot account
for how we do this with novel words (e.g., how we reconstruct the antecedent
himself in the sentence Dweezil loved himself ).11 Likewise, in order to be
able to answer a question about some discourse, we must draw a link between
a question word (say, who in the query Who does John love?) and some
entity (say, Mary). The simple recurrent network provides no direct way of
answering questions about the sentences it is exposed to, but one can test
this ability by training the network on sentences such John loves Mary. Who
loves Mary? John does. As I confirmed in further simulations, training inde-
pendence keeps the simple recurrent network from being able to answer
questions about novel entities. The simple recurrent network is thus inher-
ently unsuited to modeling those aspects of language that involve genuine
linking dependencies, including question-answering and antecedent-resolu-
tion.

5.4. Other Kinds of Generalization

Although training independence guarantees that each output unit is trained
independently, and that each input unit is trained independently, multilayer
networks can still generalize in interesting ways. Suppose for instance that
a simple recurrent network is trained on a series of sentences in which two
items John and Bill appear in virtually identical circumstances, say in the
sentences John loves Mary, John loves Susan, Bill loves Mary, and Bill loves
Susan; the weights leading from those two inputs into the hidden layer will
be nearly identical. In such a case, the two input units that encode John and
Bill, respectively, would elicit nearly identical patterns of hidden unit activ-
ity. (Another way of putting this is that the items John and Bill would cluster
together in hidden unit space.) Similarly, given the same set of sentences,
the output units corresponding to Susan and Mary would be connected to
the hidden units in nearly identical ways, despite the fact that each change

11 Elman’s experiments with subject-verb agreement obscured this point, because he did not
test whether the model could retrieve the specific subject at the point at which it predicted
verb agreement. In fact, all the network had to do was keep track of which class of words
the subject belonged to (e.g., noun or verb, singular or plural, animate or inanimate). To do
that, it sufficed to have all words in a class elicit a common pattern of hidden unit activation.
But if (say) cats and dogs elicit identical hidden unit activation patterns, their individual iden-
tity has been lost; hence there is no way for the network to recover whether the subject was
cats or dogs.
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of weight leading to the Susan unit would occur independently of each
change of a weight leading to the Mary unit.

Given that the Susan and Mary units are connected to the hidden units in
essentially the same way, if the network were now exposed to a sentence
fragment containing a novel word, say John blickets , it would be
equally likely to activate the continuations Susan and Mary. In fact, I imple-
mented precisely this example and found that the network activated both
Susan and Mary to levels of about 0.70. Both units were activated far more
than any other units, so it is reasonable to say that the network correctly
predicted both as possible continuations, just as a human might in similar
circumstances.

This turns out, however, to be a case of getting the right prediction for
the wrong reason. In a second stage of training, I trained the network on
John blickets Susan, but not on John blickets Mary. In this second stage, the
network gradually increased the activation of Susan as a continuation for
John blickets , but gradually decreased the activation of Mary as a
possible continuation. Whereas continued experience with the sentence John
blickets Susan, would make a person more likely (or at least equally likely)
to accept as grammatical the sentence John blickets Mary, greater experience
causes the network to be less likely to predict (i.e., accept as grammatical)
John blickets Mary.

Throughout this example the units representing Mary and Susan have al-
ways been trained independently. What happens in this example is that in
the initial stage of training, the two units are trained in nearly identical cir-
cumstances. At the conclusion of this initial stage, the Mary unit and the
Susan unit tend to respond in identical ways to novel stimuli. (They are
strongly activated by John blickets despite the novelty of blicket in
part because of regularities such as the fact that John is always followed two
words later by either Mary or Susan.) To the extent that Mary and Susan
appear in different training sentences in the second stage of training, the
output units that represent them tend to diverge. (Unless the network is stuck
in a local minimum, this divergence must occur, because each time that the
network predicts Mary as a continuation to John blickets when the
actual continuation was Susan, back-propagation adjusts the connection
weights leading into the Mary unit by a function of the difference between
the activation of Mary and the (zero) target for Mary, in a way that tends
to reduce that difference.)

Training independence does not show that a network like the simple recur-
rent network can never generalize. Such networks can (given the right param-
eters and training regimen) often generalize within the training space. A
model that can account for some but not all the data may well be worth
pursuing—provided it is not incompatible with the remaining data. The sim-
ple recurrent network, however, is incompatible with generalizing a particu-
lar class of universals, universally quantified one-to-one mappings. (Univer-
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sally quantified relations are relations that hold for all elements in some class;
one-to-one relations are those in which every input has a unique output.)
When the simple recurrent network succeeds in generalizing to a new input,
it succeeds by predicting which previously learned category (or categories)
a new input belongs to. After the first stage of training in the John blickets
Mary example, the network can predict that Mary is a possible continuation
to John blickets , because that sentence fragment resembles other sen-
tence fragments (John loves , Bill loves ) that the Mary node has
been trained to respond to. In universally quantified one-to-one functions, it
does not suffice to assimilate each new response to an already known cate-
gory, because each new input maps to a new output. The right answer for
a new input in the functions will thus not be a category that the network has
seen before. Since the network learns how to treat each category indepen-
dently, prior experience on other categories does not enable the network to
generalize to the new input–output pair. The localism that underlies back-
propagation is incompatible with generalizing universally quantified one-to-
one mappings to novel items.

Were universally-quantified one-to-one mappings of little importance,
such a limitation might be of little consequence. In fact, universally quanti-
fied one-to-one mappings are pervasive. For example, each stem form of a
verb corresponds to a different past tense form; the past tense of the stem
out-Gorbachev is out-Gorbacheved. Each paternal name corresponds to a
different child last name (the child of Mr. Jones bears the last name Jones;
the child of Mr. Bfltspk bears the last name Bfltspk). The playing card that
forms a pair with 2 is 2; the card that would form a pair with a novel card,
say, a Duke is a Duke. These sorts of mappings can be captured in a system
that has operations that manipulate variables that are instantiated with in-
stances, but they cannot be captured by simple recurrent networks or feedfor-
ward networks.

6. THE ROLE OF EXPERIENCE

An obvious concern is that humans have more experience than the models
described here. Nonetheless, two considerations suggest that the limitations
of training independence would also undermine feedforward networks or
simple recurrent networks with a great deal more experience.

First, training independence is not alleviated by additional training exam-
ples of the same kind. The simple recurrent network, for example, could be
trained on the linking relationship underlying ‘‘an X is an X’’ for 999 differ-
ent words, and it would still fail to generalize to the thousandth word.

Second, the inability to generalize as humans do is not necessarily allevi-
ated by additional training examples of different kinds. For example, I con-
ducted an experiment in which I trained the ‘‘identity’’ network (from Sub-
section 5.1) on the sameness relationship for all ten inputs. This initial
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background phase allows the network to ‘‘know what each unit stands for.’’
Next, I confirmed that this network mastered the training set, even for the
tenth (rightmost) input node (the one that distinguishes odd and even num-
bers). Next, I trained this pre-trained network, using all of the even numbers
as inputs, on a second function, which can be called ‘‘string reversal,’’ a
function that transforms, e.g., [1 1 0 0 1] to [1 0 0 1 1]. Even with the
additional background training on the identity function, the network did not
generalize string reversal to the odd numbers. Although the tenth bit lies
inside the training space for the identity function, it lies outside the training
space for the string reversal function. Because the tenth bit lies outside the
training space of the string reversal function, the network does not generalize
the string reversal function to the tenth bit. Similarly, I found that training
the simple recurrent network on the sentences such as the bee sniffs the
blicket (as well as sentences such as the bee sniffs the flower, the bee sniffs
the tulip, and so forth), does not help the network infer that the continuation
to a blicket is a is blicket. What matters is the training space with
respect to some particular function. Any item that is outside the training
space with respect to that function—even if it is within the training space
of some other function—will not be generalized properly.

While simple recurrent networks and feedforward networks can not gener-
alize to items that are familiar, but new to some particular function, humans
can. For example, consider the following two examples that consist of a
novel function entirely of well-practiced letters:

W X H → H X W
[read as ‘‘given the input W X H, the output is H X W’’]

H K X → X K H.

What output corresponds to the input ‘‘S O C’’? On virtually any account
of how inputs are represented, the input ‘‘S O C’’ lies outside the training
space of the function that is illustrated. For example, ‘‘S’’ would be outside
the training space of the function that is illustrated, whether ‘‘S’’ were en-
coded locally as 1S, through sets of high-level distributed features such
1curved-line, or through sets of low-level distributed features such as
1pixel-in-the-center-of-the-bottom-row.

Despite the fact that the input ‘‘S O C’’ lies outside the training space
of the function that is illustrated, people readily infer that the corresponding
output is ‘‘C O S.’’ (People can extend the reversal relation to novel squig-
gles that are not even letters, transforming the input ‘‘✺ ✉ ➙’’ into the output
‘‘➙ ✉ ✺.’’) Indeed, human generalizations of the reversal pattern seem to
be indifferent as to whether they are applied to items that are within the
function’s training space (more W’s, X’s, and so forth) or to items that out-
side the function’s training space (S’s, O’s, C’s, etc.).
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In sum, humans can generalize outside the training space of a particular
function on the basis of limited experience, whereas neither feedforward net-
works nor simple recurrent networks can generalize outside the training
space, regardless of how large the training space is. Although humans do
have more learning experience than any particular network, the difference
in how they generalize outside the training space is not due to differences
in experience, but rather to differences in the computations that they per-
form.

7. ALTERNATIVE MODELS

7.1. Alternative Architectures

As already discussed, obvious modifications like adding hidden layers or
additional hidden units do not affect the training independence limitations.
Such modifications therefore would not allow models to generalize univer-
sals beyond the training space. Likewise, dividing these models into modules
(Jacobs, Jordan, & Barto, 1991) would not by itself help with problems posed
here, since the problem does not lie in the internal topology of the network,
but in the training of the connections that run from the internal layer(s) to
the output units.12

Critics of earlier drafts of this article proposed several alternative connec-
tionist accounts, but each alternative account ignored the distinction between
implementational and eliminative connectionism. For example, one sug-
gested that the identity task could be solved by a model that used a ‘‘moving-
window’’ technique borrowed from Rosenberg and Sejnowski (1987), along
the lines of the model illustrated in Fig. 7. The connectionist part is a single
input node and single output node, which must be combined with an external
control mechanism. This external control mechanism would move (say) left-
to-right across the string of input bits, taking one bit at a time and passing
that bit to the simple net that connects with the input with weight one to the
output node (which would have a linear activation function).

Such a model can indeed extend identity to arbitrary items, but such a
model is essentially an implementation of a patently symbolic algorithm like
the following:

12 Modular networks that incorporate ways of binding variables could generalize outside
the training space. For example, an extension of the RAAM networks of Pollack (1990) that
was proposed by Chalmers (1990) and Niklasson and Gelder (1994) uses two separate net-
works, one to encode (and decode) all possible instances of variable in a fixed input bank,
and another to transform the encoded representations in a systematic way; the structure of
these models precisely parallels the division between encoding and computation in standard
symbolic models. Such networks are best seen as implementations of those models, not as
genuine, nonsymbolic alternatives.
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FIG. 7. A model of the identity function. Rectangles indicate devices whose internal struc-
ture is not illustrated.

repeat for each bit X in a string

copy bit X

until string is empty.

Since the model makes the same predictions as such an algorithm and has
the same intermediate states, it is hard to see how it could be construed as
an alternative to symbol-manipulation.

Indeed, the ‘‘connectionist’’ part of this model is only a tiny part of a
larger system; most of the real burden lies with the serial ‘‘moving window
control device’’ and the corresponding ‘‘output reassembly device.’’ This
does not mean that eliminative connectionists must disavow sequentiality,13

but rather that researchers who claim that symbol-manipulation is incorrect
or provides ‘‘a mere approximation’’ must provide an account of sequen-
tiality that somehow differs from the account provided by symbol-manipula-
tion.

Another possibility is to build a hybrid model that includes some symbol-
manipulating components and some non-symbol-manipulating compo-
nents.14 The model that Pinker, Prince, and I have proposed for the English

13 Although no connectionist to my knowledge has specifically disavowed sequentiality, the
possibility that Parallel Distributed Processing might ultimately obviate the need for sequential
mechanisms seems implicit in many discussions of the appeal of connectionism, such as an
early claim that ‘‘parallel distributed processing models offer alternatives to serial models of
the microstructure of cognition’’ (McClelland, Rumelhart, & Hinton, 1986, p. 12).

14 Not all purported ‘‘hybrid’’ models are really hybrids between symbol-manipulating
mechanisms and non-symbol-manipulating models. Some putative hybrids are really pure sym-
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past tense is of this sort (Marcus, 1996; Marcus et al., 1995; Pinker, 1991;
Pinker & Prince, 1988). Irregular verbs (sing-sang) are inflected by pattern-
associator while regular verbs are inflected by a rule (concatenate the -ed
morpheme to any instantiation of the variable verb stem). Since such a model
includes both symbol-manipulating machinery and a pattern associator that
does not appear to depend on computations over variables and a rule, it would
not eliminate symbol-manipulation; rather the pattern associator would be
used to supplement a symbol-manipulating system.

None of which is to say that it is impossible to build some connectionist
model that could generalize outside the training space. Models such as those
of Shastri and Ajjanagadde (1993), Hummel and Holyoak (1997), Holyoak
(1997), and Halford et al. (1997) implement explicit variables and explicit
relationships between those variables, and hence can readily generalize out-
side the training space.15 (For one demonstration of a connectionist model
that implements variable-manipulation and solves the identity task, see Holy-
oak and Hummel, in press.)

7.2. Alternative Learning Algorithms

Most variants on back-propagation retain the limitations of training inde-
pendence, as do other popular learning algorithms such as the Hebbian rule.
One could change the learning algorithm such that units were not trained
independently. Recall, though, McClelland and Rumelhart’s claim that what
distinguishes their models is that the ‘‘learning rules are completely local.’’
Algorithms that treat sets of nodes globally as a group would abandon the
core assumption of eliminative connectionism in favor of models that might
well be implementations of systems that manipulate variables.

7.3. Alternative Ways to Set Up the Problem Space

Another possibility is to set up the problem in a different way.

7.3.1. Distributed representations. The most obvious way of changing the
nature of the problem would be to use distributed representations. Recall
that distributed representations are representations in which a given input
item is encoded as a collection of input features; a word, for instance, could
be represented by some set of semantic or phonological features (Hinton,
McClelland, & Rumelhart, 1986).

The way that distributed representations might in principle help is that
they might force all possible inputs into the same space, such that a novel
input would be guaranteed to appear within the training space. The idea is

bol-manipulating models in which some but not all components are implemented at a connec-
tionist level. Here the term hybrid really refers to a hybrid level of analysis rather than a
hybrid cognitive architecture.

15 For a critique of the tensor representation of variables used by Halford et al. (1997), see
Holyoak and Hummel (in press).
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that if you choose the right distributed representation, no input will be en-
tirely new. Unfortunately, this approach cannot work as a general solution,
for two reasons.

First, distributed representations could work as general solution only if
the representations of all possible novel items only contained features that
appear in words that appeared in the training set. In fact, realistic novel items
would often contain untrained features. For instance, in the balance beam
model, the input representations already are distributed (each input stimulus
entails activating 4 nodes), yet there will always be some novel input that
does not overlap in feature space with the inputs that appeared in training.
If the model is trained on problems containing no more than n weights per
peg, a problem containing n 1 1 weights on a peg will lie outside the training
space.

Second, models that use many types of distributed representations cannot
distinctly represent combinations of possible items, a problem that von der
Malsburg (1981) dubbed the ‘‘superposition catastrophe’’ (see also Hum-
mel & Holyoak, 1993; Hinton et al., 1986). If models like the sentence-
prediction model and the family-tree model were modified to use distributed
output representations, they could not do the very tasks for which they were
intended. For example, the goal of Elman’s model is to activate all and only
the plausible continuations to a given sentence fragment; encoded words as
distributed representations would interfere with this goal. For example, sup-
pose that words were encoded by a set of orthographic features, such as letter
‘‘a’’ in the first position of a word, letter ‘‘a’’ in the second position, and
so forth. Because virtually any letter can appear in either a noun or a verb,
activating the set of all features that appear in nouns would be tantamount to
activating the set of features that can appear in verbs. In short, it would be
impossible to activate the nouns without simultaneously activating the verbs.

Likewise, in any reasonable semantic encoding scheme, there would be
some overlap between the features of nouns and the features of verbs, so
activating all the nouns would lead to activating inadvertently at least some
of the verbs. Indeed, the only way around this is to presuppose the categories
noun and verb, by having input representations that contain some features
that would appear only in nouns and other features that would be unique to
verbs—thereby presupposing the very categories that the model is supposed
to acquire.16

Indeed, while the published versions of the simple recurrent network all

16 An alternative is encoding schemes in which distributed features are correlated (albeit
imperfectly) with grammatical category. For example, if some input feature like ‘‘animate’’
occurs with 75% of nouns and 25% of verbs, in positions in which a noun should occur, the
network tends to activate that feature to a level of 0.75. This is, to be sure, a correct reflection
of the conditional probability of that feature appearing in that position. But because some
verbs carry that feature, and because some nouns do not carry it, the network’s response once
again cannot separate the nouns from the verbs.



274 GARY F. MARCUS

encode words locally, an earlier, unpublished version of the SRN (Elman,
1988) encoded words with distributed representations; given the superposit-
ion catastrophe, it is unsurprising that this ‘‘network’s performance at the
end of training . . . was not very good.’’ After five passes through 10,000
sentences, ‘‘the network was still making many mistakes’’ (p. 17).17 In short,
the simple recurrent network cannot be used to predict sequences of word
classes drawn from a grammar if the representations of words from different
classes overlap.

A similar problem of superposition would affect a version of Hinton’s
family-tree model that used distributed output representations, because many
agent-relationship combinations must allow more than one filler for the pa-
tient role. For example, given a query such as ‘‘Penny is the mother of X,’’
the response should be ‘‘Arthur AND Victoria.’’ In the localist output ver-
sion of the family-tree model (i.e., the one Hinton actually proposed), this
problem is solved naturally: the model simply activates simultaneously both
the Arthur node and the Victoria node. In a distributed output model, this
becomes more difficult. To take a concrete example, imagine that Arthur is
encoded by activating only input nodes 1 and 2, Victoria by nodes 3 and 4,
Penny by nodes 1 and 3, and Mike by nodes 2 and 4. To indicate that Arthur
and Victoria were both sons of Penny, this distributed input/output version
of Hinton’s model would need to activate the nodes 1, 2, 3, and 4: exactly
the same set of nodes as it would have used to activate Penny and Mike,
another example of the superposition catastrophe.

Mixed representations in which some features are localist identifiers of
individuals (1John, 1Peter, 1Mary) and in which other features form dis-
tributed representations (1young, 1male, 1red-haired ) do not solve these
problems. In the family-tree model, the localist identifiers of individuals
would still lie outside the training space and hence not be generalized to,

17 Although the network’s performance was poor on the task of predicting new words, groups
of words from common categories (e.g., transitive verbs) elicited common patterns of hidden
unit activation. Elman argued that these common patterns of hidden unit activation show that
‘‘the network has discovered that there are several major categories of words. One large cate-
gory corresponds to verbs; another category corresponds to nouns.’’ In fact, these common
patterns of hidden unit activation do not genuinely represent categories such as noun or verb.
In the randomly generated training grammar, words of a common category appear in essentially
the same set of structures. In real language, words are not distributed uniformly in this way;
some nouns may be more likely to occur in one structure than another. Moreover, we can
accord nouns that have appeared in only one sentence structure the same grammatical privi-
leges as a word that appeared in many structures (e.g., if we read the sentence the gerenuk
eluded the lion, we can infer the grammaticality of the sentence the lion chased the gerenuk).
In contrast, in the simple recurrent network, a word that appears in a single sentence elicits
a very different hidden unit activation pattern than does a word that appears in many different
sentences. Thus, rather than reflecting genuine grammatical categories, the patterns of hidden
unit activation reflect only the similarity of contexts in which a given set of words appeared.
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while the distributed feature would still be subject to the superposition catas-
trophe. Similarly, in the case of the simple recurrent network, if rose were
encoded as [1rose, 1flower], and lilac were encoded as [1lilac, 1flower],
an SRN that was trained on a rose is a rose would predict that the continua-
tion of a lilac is a . . . would be [1flower], rather than the correct [1flower,
1lilac]. As before, whichever features were outside the training space would
not be generalized.

Note furthermore that if it were to turn out that eliminative connectionist
networks could account for how universals are freely generalized, but only
by choosing the representation vector very carefully in a particular problem
domain so as to avoid the extra-training-space problem, the answer to the
key question, ‘‘What makes the model work?’’ would lie in factors that have
nothing to do with network architecture. Rather, in such a case, the explana-
tory power would lie in the choice of innate input representation hardware
and the usually hidden pre-processor that delivers the input vector to a model.

7.3.2. Encoding inputs as analog values. While most networks represent
inputs by pattern of activation across sets of nodes, in principle one could
use a single node to represent all possible inputs, assigning each possible
input to some real number. One could then implement the identity function
by connecting a single input node with a connection weight of 1.0 to an
output node with a linear activation function. Such an approach would imple-
ment the identity function, but only by incorporating what is a transparent
implementation of a register and a copy instruction. The node in question
would represent a variable; its value would represent the instantiation of that
variable. The operation of copying would be implemented by forcing the
activation of the output node to equal the activation of the input node. Such
a model makes the same predictions and has the same intermediate state as
a symbol-manipulating operation that copies the contents of one register into
another register, hence it would not provide an alternative to symbol-manipu-
lation.

8. GENERAL DISCUSSION

This paper has presented the following argument:

• Humans can generalize a wide range of universals to arbitrary novel
instances. They appear to do so in many areas of language (including
syntax, morphology, and discourse) and thought (including transitive
inference, entailments, and class-inclusion relationships).

• Advocates of symbol-manipulation assume that the mind instantiates
symbol-manipulating mechanisms including symbols, categories, and
variables, and mechanisms for assigning instances to categories and rep-
resenting and extending relationships between variables. This account
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provides a straightforward framework for understanding how universals
are extended to arbitrary novel instances.

• Eliminative connectionism proposes that the mind does not instantiate
the mechanisms of symbol-manipulation.

• Current eliminative connectionist models map input vectors to output
vectors using the back-propagation algorithm (or one of its variants).

• To generalize universals to arbitrary novel instances, these models
would need to generalize outside the training space.

• These models cannot generalize outside the training space.
• Therefore, current eliminative connectionist models cannot account for

those cognitive phenomena that involve universals that can be freely
extended to arbitrary cases.

The continued plausibility of the eliminative connectionist account thus rests
on discovering an alternative that can generalize these universals without
(perhaps covertly) implementing the very symbol-manipulation accounts that
eliminative connectionism aims to eliminate. At least for now, eliminative
connectionism does not offer a viable alternative account of how humans
extend universals, whether they be universals in language or in cognition.
In contrast, the framework of symbol-manipulation can provide an account
of how humans generalize universals.

This is not, of course, a claim that all aspects of cognition are computed
by the manipulation of symbols. Rather, the claim is only that some pervasive
aspects of cognition (e.g., the generalization of universals) do depend on
symbol-manipulation. It seems likely that there are other aspects of cognition
(e.g., aspects of motor control, memory, and skill-learning) that do not in-
volve symbol-manipulation; feedforward networks and simple recurrent net-
works might provide an adequate account of those domains.

Since the problems of extrapolation that are identified in this paper are so
straightforward and so pervasive, it is surprising that they have not been
emphasized earlier. This may be because advocates of eliminative connec-
tionism tend to focus on what their models can explain, while ignoring the
limitations of their models. For example, reports of eliminative connectionist
models by advocates of eliminative connectionism typically report the abili-
ties of models to generalize within the training space, but rarely if ever report
tests of the abilities of those models to generalize outside the training space.
Similarly, advocates of eliminative connectionism have often attempted to
rebut criticism by noting that multilayer feedforward networks represent a
substantial advance over earlier two-layer networks. To be sure, multilayer
feedforward networks can represent some functions that are altogether unrep-
resentable in two-layer networks, but hidden layers are not a panacea. In-
stead, what I have shown is that multilayer feedforward networks inherit—
unchanged—the Achilles heel of their two-layer predecessors (perceptrons),
described over 35 years ago by Rosenblatt (1962):
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In a simple perceptron, patterns are recognized before ‘‘relations’’; indeed, abstract
relations, such as ‘‘A above B’’ or ‘‘the triangle is inside the circle’’ are never
abstracted as such, but can only be acquired by means of a sort of exhaustive rote-
learning procedure, in which every case in which the relation holds is taught to the
perceptron individually. (p. 73)

The argument presented in this article is not a tautology—it is not a claim
that variables can be handled only by systems that can handle variables.
Every function that has been described in this paper could be represented
in some connectionist network. Rather, the problem is that, given realistic,
finite input, current eliminative connectionist models lack sufficient innate
structure to learn these functions. The argument is that universals can only
be extended by a system that is innately endowed with machinery that in-
stantiates the machinery of symbol-manipulation. In the simulations reported
here, the linking relationships between variables were never violated, but
the feedforward/simple recurrent network architecture, whatever its other
virtues as a general-purpose problem solver, could not extract a regular rela-
tionship that held between variables. Because of intrinsic limitations, the
back-propagation algorithm can detect correlations between features, but not
between variables; no matter what the structure of the environment is, the
innate structure of the back-propagation algorithm guarantees that it can
never bootstrap its way into detecting correlations between variables. The
limitations of back-propagation do not by themselves rule out the possibility
that some other algorithm might discern correlations between variables, but
there is no evidence that there is way of constructing such an algorithm that
would not itself presuppose variables.

Although the arguments presented in this paper undermine current ver-
sions of eliminative connectionism, connectionism itself should not be
abandoned. Rather, my hope is that this paper will renew interest in imple-
mentational connectionism. If the basic entities presupposed by symbol-
manipulation are essential to language and cognition, it is an important
project to discover how the machinery of symbol manipulation could be
implemented in the brain. The field of connectionism might well play a cru-
cial role in that project.
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